
Finite Time Thermodynamics: Limiting Performance of Diffusion Engines and Membrane
Systems

A. M. Tsirlin, † E. E. Leskov,† and V. Kazakov*,‡

Program System Institute, Russian Academy of Sciences, set “Botik”, PereaslaVl-Zalesky, Russia 152020, and
School of Finance and Economics, UniVersity of Technology, Sydney, PO Box 123 Broadway,
NSW 2007 Australia

ReceiVed: July 4, 2005; In Final Form: September 8, 2005

In this paper, the limiting performance of membrane systems with inhomogeneous composition is studied
within the class of fixed rate processes. The problem of maintaining a nonequilibrium state in such a system
using minimal power (separation problem) and the problem of extracting maximal power from such a system
(diffusion engine problem) are formulated and solved. Results are obtained for diffusion engines with constant
and periodic contact between the working body and the reservoirs.

1. Introduction

The problem of extracting work from a thermodynamic
system that is not in equilibrium and its inverse problem of
maintaining a system in a nonequilibrium state are central in
thermodynamics. For a system that is not in equilibrium with
respect to temperature, the first problem is solved using heat
engines and the second using heat pumps. For a system that is
not in equilibrium with respect to composition the second
problem is solved using separation systems, where the first can
be solved using diffusion engines. Membrane systems play a
central role among separation systems and diffusion engines
and they performances depend strongly on membranes’ char-
acteristics.

A vast literature is devoted to the applications of membrane
systems as separation systems and as diffusion engines.1-18 In
this paper, we will study these systems within the framework
of finite-time thermodynamics (e.g., refs 19, 20, 21), which is
concerned with finding limiting performance for nonequilibrium
thermodynamic systems, where processes have finite duration
and the average rates of fluxes are given. Some of the best
known results obtained here are the solutions to the problem of
maximizing the power of a heat engine with given heat transfer
coefficients; and to the problem of maximizing the efficiency
of a heat engine with given power. System driven by difference
in chemical potential have been also studied using finite-time
thermodynamics.26

The problem of finding the limiting performance for a
diffusion engine was first formulated in its simplest form in.20

In this paper, we present a comprehensive study of the limiting
performance for a diffusion engine within the class of fixed
rate processes, paying special attention to the following ques-
tions:

1. What is the minimal amount of energy necessary for the
separation of a mixture with a given composition into key
products with given composition?

2. What is the maximal power and maximal efficiency of a
diffusion engine?

The answers to these questions depend strongly on whether
the input/feed mixture used by the engine is gaseous or liquid,

as this determines the form of the chemical potentials and
therefore the driving forces of the processes. For near ideal gas
mixtures the chemical potential of theith component of the
mixture22 is

where Pi is the partial pressure of theith component. After
denoting the ratio of the partial pressure to the full pressure as
xi, we get

and the chemical potential takes the form

Hereµi1(T, P) ) µi0(T) + RT ln P, N is the number of moles
of mixture andNi is the number of moles of itsith component.

For a liquid the chemical potential has the same form as (1),
but the potentialµi1(T, P) is different. This is due to the fact22

that the chemical potentialµi(T, P, xi) represents Gibbs molar
energy of theith component, while its derivative with respect
to pressure is the molar volume of this componentVi. Unlike
the case for a gas, the molar volume for a liquid is practically
independent of pressure and is only weakly dependent on
temperature. Since

we get

We assume in the sequel that all processes are isothermal
and that the temperatures of all subsystems are equal toT. All
problems are first considered for gaseous and then for liquid
mixtures. To make the results more specific, we consider liquid
“saline engines” that use water-based saline solutions in the
examples.
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2. Limiting Performance of Gas Separation Using
Membrane Systems

Maximal Work in a Process with a Reservoir.Consider a
system that includes reservoir (source with infinite capacity)
with the temperatureT, pressureP0, and chemical potentialµ0

and the working body with the same temperature, volumeV >
0 and chemical potentialµ.

The initial state of the working bodyE(0), S(0), N(0), and
V(0) is given.E and S are internal energy and entropy. The
working body’s variables are linked by the equation of state

The duration of the processτ and its entropyS(τ) are given.
The combined volume of the source and working body is
constant.

The maximal work problem (maximization of the energy
extracted from the system) is equivalent to minimization of the
internal energy att ) τ

Since the increments of working body’s entropy and temperature
are given,∆E ) T∆S is fixed and the problem is reduced to
maximization

subject to

This is an averaged nonlinear programming problem.23 Its
optimal solutionµ*( t) is either a time-independent or a piece-
wise constant function of time that takes not more values than
the number of constraints (eq 5) plus one. These values this
function takes are calledbasicvalues. In our case there is no
more than two basic values. They are determined from the
following condition on the Lagrange function of the problem
(eqs 4 and 5)

After one or two basic values ofµ* are found using (6), we
then calculateN*( t) using the following equation:

N*( t) is either a linear or a piecewise linear function. In the
former case its slope isg(µ0,µ*) and in the latter the slope is
g(µ0,µ1

/) on the interval 0,γτ and is g(µ0,µ2
/) outside of this

interval. γ is to be found from the condition

If the Lagrange functionL is convex onµ, that is, if

then only the one basic value exists.
One can show that solution has physical meaning if and only

if λ > 0 and dg/dµ < 0. Therefore, for the majority of real

dependenciesg(µ) the condition thatL is convex holds,µ* is
constant and is determined by the equation

Its substitution into (3) yieldsA*. For a separation problem,
this value corresponds to the minimum of work and is always
negative.

Supposeg(µ0,µ) ) R(µ0)(µ0 - µ). The Lagrange function
then takes the form

It is convex onµ and has a single minimum atµ* ) µ0/2λ.
From (7), we get

and

The optimal rate of change of the composition of the working
body is constant and equal tog*.

Maximal Power of Diffusion-Mechanical Cycle.Consider
a system that includes working body and two reservoirs with
different chemical potentialsµ+, andµ- (for definiteness,µ+
> µ-) (Figure 1). The system’s objective is to extract the
maximal amount of work. The system operates cyclically and
the increments of entropy, internal energy, and mass of the
working body over the cycle are all equal to 0, over the cycle.
The temperatures of all subsystems are the same.

Contact with ReserVoirs in Turn. First, we consider the case
when the working contacts each of two reservoirs in turn.τ
denotes the cycle’s period andµ0(t) - reservoir’s chemical
potential, which takes two values,µ+ andµ-. Then the problem
of obtaining the maximal workA in the given periodτ takes
the form

subject to constraints the cyclic condition

E(0) ) E(S(0), N(0), V(0))

A ) [E(0) - E(τ) + E0(0) - E0(τ)] f max (3)

∆E0 ) E0(0) - E0(τ) ) ∫0

τ
µ0g(µ0,µ) dt f max

µ(t)
(4)

∫0

τ
µ(t)g(µ0,µ) dt ) T∆S (5)

L ) {g(µ0,µ)(µ0 - λµ) + λT∆S
τ } f min

µ
max

λ
(6)

dN
dt

) g(µ0,µ), N(0) is fixed

γµ1
/g(µ0,µ1

/) + (1 - γ)µ2
/g(µ0,µ2

/) ) T∆S/τ

d2g

dµ2
> 2λdg

dµ

Figure 1. Structure of a diffusion engine with continuous contact
between the working body and the reservoirs.

µg(µ0,µ) ) T∆S
τ

N*(τ) ) N0 + g(µ0,µ*)τ

∆E° ) µ0g(µ0,µ*)τ (7)

L ) R(µ0)(µ0 - µ)(µ0 - λµ) + λT∆S
τ

R(µ0)(µ0 - µ*)µ* ) T∆S
τ

µ* ) µ0/2 + xµ02/4 - T∆S

τR(µ0)
,

g* ) R(µ0)(µ0/2 - xµ02/4 - T∆S

τR(µ0))

A ) E0(0) - E0(τ) ) ∫τ

0
µg(µ0,µ) dt f max

µ0,µ
(8)

∆N ) ∫τ

0
g(µ0,µ) dt ) 0 (9)
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This is again an average nonlinear programming problem whose
solution is determined by the basic values ofµ and µ0. They
are determined by the conditions of maximum of the Lagrange
function of the problem (eqs 8 and 9) onµ0 and µ and its
minimum onλ

There are two basic values ofµ0. One corresponds toµ0 ) µ+
and the other toµ0 ) µ-. If the Lagrange function is strictly
convex onµ, then the basic values obey the conditions

or

We denote the root of this equation forµ0 ) µ- asµ1 and for
µ0 ) µ+ asµ2. SinceL is maximal at the basic values

which determinesλ.
Let us specify the obtained dependencies for

From (10) we get

Substitution ofµ1 andµ2 into L for each basic value gives the
L dependence onλ

The minimum onλ of the maximum ofL on µ0, µ is attained
here atλ* (Figure 2)

The fractions of the cycle when there are contact with corre-
sponding reservoir are determined by the condition (eq 9)

The maximal work is

whereµ1 andµ2 are to be found from (11) afterλ from (12) is
substituted into it. The maximal power is

Continuous Contact with ReserVoirs. It is possible that there
is a uninterrupted, continuous contact between the working body
of a heat engine and its reservoirs (a turbine). In this case, the
parameters of the working body are distributed, and if they are
driven by convective flux then they can be approximately
described as reversible. Similarly in a system that is not
homogeneous with respect to concentration (eg separation
system or diffusion engine) it is possible to have a separation
system/diffusion engine with continuous contact between the
working body and reservoirs.

The maximal power problem then is reduced to a nonlinear
programming problem

subject to

Its condition of optimality yields

which, jointly with (13), determines the problem’s unknowns.
Supposeg1 andg2 are proportional to the difference of the

chemical potentials

Then eq 14 takes the form

or

From the conditiong1 ) g2, we get

Figure 2. Characteristic dependence onλ of the maximum with respect
to µ of the Lagrange function forµ0 ) µ+ andµ0 ) µ-.

L ) {g(µ0,µ)(µ - λ)} f max
µ0,µ

min
λ

∂L
∂µ

) ∂g
∂µ

(µ - λ) + g(µ0,µ) ) 0

g(µ0,µ)

µ - λ
) -

∂g(µ0,µ)

∂µ

L(µ+,µ1,λ) ) L(µ-,µ2,λ) (10)

g(µ0,µ) ) R(µ0)(µ0 - µ)

µ1 )
µ+ + λ

2
, µ2 )

µ- + λ
2

(11)

L+ ) L(µ+,µ1) )
R+

4
(µ+ - λ)2

L- ) L(µ-,µ2) )
R-

4
(µ- - λ)2

L+(λ) ) L-(λ) w λ* )
xR+µ+ + xR-µ-

xR+ + xR-

(12)

γ+ )
R-xR+

R-xR+ + R+xR-

γ- )
R+xR-

R-xR+ + R+xR-

A*(τ) ) τ[γ+µ1R+(µ+ - µ1) + γ-µ2R-(µ2 - µ-)]

A*(τ)
τ

) [γ+µ1R+(µ+ - µ1) + γ-µ2R-(µ2 - µ-)]

p ) [g1(µ+,µ1)µ1 - g2(µ2,µ-)µ2] f max
µ1µ2

g1(µ+,µ1) - g2(µ2,µ-) ) 0 (13)

µ1 - µ2 )
g2(µ2,µ-)

∂g2/∂µ2
-

g1(µ+,µ1)

∂g1/∂µ1
(14)

g1 ) R1(µ+ - µ1), g2 ) R2(µ2 - µ-)

µ1 - µ2 ) (µ2 - µ-) + (µ+ - µ1)

µ1 - µ2 )
µ+ - µ-

2
(15)

R1µ1 + R2µ2 ) R1µ+ + R2µ- (16)
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The solution of (15) and (16) is

The maximal power which corresponds to this solution is

where the equivalent mass transfer coefficient is

3. Limiting Performance for Membrane Separation of
Liquid Mixtures

Consider a system that consists of two liquids with the same
temperatures separated by a semipermeable membrane. One of
the liquids is a pure solvent and the second is a solvent mixed
with a second liquid with the molar concentrationC. The
membrane is permeable only for the solvent. The system is in
equilibrium when the chemical potentials calculated using (2)
are the same, that is, when

The subscript 0 here corresponds to the pure solvent and
subscriptr to the dilute solution,x0 is the molar fraction of the
solvent in the mixture andx1 is the molar fraction of the
substance that is dissolved in the solvent. The pressure difference
on two sides on the membrane is denoted asπ. We assume
that molar concentrations are small and molar volumesV0

and Vr are equal. We assume thatx1 is small and ln(x0) )
ln(1 - x1) ≈ -x1. Then

whereC is the concentration of the dissolved substance,π is
the osmotic pressure,T is the temperature, andR is the universal
gas constant.

Equation 17 is called the van’t Hoff equation for osmotic
pressure.

Consider the system shown in Figure 3.
The pure solvent is in the left chamber. The pressure there is

the same external pressurep0. The mixture is in the right
chamber. Its volume is denoted asV and the concentration of

the dissolved substance in it asC. The pressure in this chamber
is p2. We assume that the solution is ideal. In equilibrium, when
the flow through the right chamber is equal zero, the pressure
which sets in this chamber exceedsp0 by the osmotic pressure
π. This osmotic pressure is linked to the concentrations in this
chamber and temperature via van’t Hoff equation. If the mixture
in the right chamber is replenished, then the pressurep2 < p0

+ π. This drives the flow of solventg0 through the membrane.
The usual assumption is that this diffusive flow is proportional
to the difference between the actual and equilibrium pressures

where∆p ) p2 - p0.
We denote the power of the pump that supplies feed mixture

as n, its rate asg1 and the concentration of the dissolved
substance in the feed asC1. Assuming that the pump has 100%
efficiency, we get

The flow through the membrane increases the volume in the
right chamber, which drives the turbine and generates powerN

The power and efficiency of the saline diffusion engine are

The efficiency is defined as work per concentrated solution’s
unit volume. We assumeπ is independent of∆p. In this case
the power is maximal and equal to

at ∆p ) π/2. SinceC < C1, this power is always lower than

which gives an upper bound on the maximal power.
The bound (19) can be made more accurate if we take into

account thatg0, ∆p andC obey (18) as well as the mass balance
with respect to the dissolved component

After expressingC and∆p in terms ofg0 (from (18), and (20))
and their substitution intoN0 andη, we get

Both functions ofg0 in (22) and (23) are concave and have
maxima at the same pointg0

/, which can be found from the

Figure 3. Structure of saline diffusion engine with constant contact
between the working body and reservoirs.

µ2
/ ) 1

2(R1 + R2)
[µ+R1 + µ-(R1 + 2R2)]

µ1
/ ) 1

2(R1 + R2)
[µ+(R2 + 2R1) + µ-R2]

pmax ) Rj
4

(µ+ - µ-)2

Rj )
R1R2

R1 + R2

V0P0 - VrPr ) -RT ln x0

π ) RT
x1

V0
) RTC (17)

g0 ) R(p0 + π - p2) ) R(π - ∆p) (18)

n ) ∆pg1

N ) (g1 + g0)∆p

N0 ) N - n ) g0∆p ) R(π - ∆p)∆p

η )
N0

g1
)

R(π - ∆p)∆p
g1

N0 ) Rπ2

4
) R

4
(CRT)2

N*0 ) R
4

(C1RT)2 (19)

(g1 + g0)C ) g1C1 (20)

C )
g1C1

g1 + g0
, ∆p ) CRT-

g0

R
(21)

N0 ) g0∆p )
RTC1g1g0

g1 + g0
-

g2
0

R
(22)

η )
R(π - ∆p)∆p

g1
)

RTC1g0

g1 + g0
-

g2
0

Rg1
(23)
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maximum condition for any of them. We use the maximum of
N0 to find this optimalg0

/. We get

It can be rewritten as

we denote the expression in its right-hand side asM and its
root asg0

/. It is clear that it obeys

The first approximation forg0
/ can be calculated using the

chord method:24

Since the expression in the left-hand side of (25) is convex,g̃0

< g0
/.

If the difference betweenM andg̃0 is not small enough, then
this solution can be made more accurate suing tangent formula

The correction term is always positive andg0
1 > g0

/. The
accuracy of this solution can be checked by substituting it into
(24).

It is worth noting that the assumption about ideal solution
leads to the constraint on the concentration of the working
solution

This concentration cannot be too high otherwise the molecules
of the dissolved substance will interact with each other and (17)
will not hold.

Example. Let us find the maximal powerN0 and maximal
efficiencyη of diffusion engine with the following parameters:
g1 ) 0.000008 m/s,T ) 298 K, R ) 8.31 J/(molK), and
concentration of the dissolved substance (salt) in the input
solutionC̃1 ) 40 kg/m3. Solt’s molecular weight isµ ) 0.05843
kg/mol, and its molar concentration isC1 ) 684.57 mol/m3.
The membrane which separates compartments with concentrated
and weak solutions is a standard industrial low adsorption acetate
membrane filter with the pore size 0.2µm, the average water
flow rate is 4× 10-7 m/s, and the pressure difference is 105

Pa. The membrane’s mass transfer coefficient can be found using
the water rate’s dependence on pressure

From this equation, it follows that

The estimate (upper bound) on the diffusion engine’s power
given by (19) is

Since C < C1, this estimate is not accurate and should be
corrected using formulas 24-27. We getM ) 3.39 × 10-4.
Then the first approximation given by (26) is

Since the distance betweenM and g̃0 is large, one needs to
calculate the second approximationg0

1 using (27)

This g0
1 is sufficiently close tog0

/ which maximizes the power
and efficiency of the diffusion engine.

From (22) and (23), we find

4. Saline Diffusion Engine Where the Working Body
Contacts Reservoirs in Turn

The diffusion engine considered in the previous section
operated stationary and uses the working body, which always
stays in contact with both sources. One source supplied
concentrated solution and the other supplied pure solvent. An
alternative structure for a diffusive engine is shown in Figure
4. Here the working body contacts two reservoirs in turn,
receiving solvent through one membrane and rejecting it into
the concentrated solution through the other membrane. The
pressure and the rate of the working body here change
periodically. Pressure increases when the rate is lower (power
n is spent) and decreases when the rate is higher (powerN is
generated).

We assume that no energy is drive the flow through the lower
chamber, the concentration of the dissolved substance in theg2

flow is equal 1 and the external pressure isp0.
The power of this engine is

where

æ(g0) ) g0(g1 + g0)
2 )

RRTg
2
1C1

2
(24)

g3
0

g2
1

+ 2
g2

0

g1
+ g0 )

RRTC1

2
(25)

0 < g0
/ < M

g̃0 ) M

M2/g2
1 + 2M1/g1 + 1

(26)

g1
0 ) g̃0 + (M -

g̃3
0

g2
1

- 2
g̃2

0

g1
- g̃0)(3g̃2

0

g2
1

+
4g̃0

g1
+ 1) (27)

C ) C1

g1

g1 + g0

g ) R‚∆p

R ) g
∆p

) 4‚10-8m/(s‚N)

Figure 4. Structure of saline diffusion engine where the working body
contacts reservoirs in turn.

N*0 ) 0.000287× 104 W/(s‚m2)

g̃0 ) 1.67× 10-6m/s

g1
0 ) 3.53× 10-6m/s

N*0 ) 1.03 J/(s‚m2)

η* ) 0.129× 106 J/m5

N0 ) N - n ) (g1 + g0)∆p21 - g1∆p21 ) g0∆p21

∆p21 ) p2 - p1
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We define the efficiency as the ration ofN0 to the rate ofg2

The mass transfer kinetics is determined by the equations

Here∆p20 ) p2 - p0, ∆π21 ) π2 - π1, and∆p10 ) p1 - p0.
Equation 28 gives cyclic condition for the working body’s mass
corresponds to the condition that the mass of the working body’s
mass.

Figure 5 shows the cycle of the working body of this diffusion
engine.

The powern is equal to the area of the rectangularp2dCp1,
and the powerN to the area ofp2abp1. The engine’s powerN0

is equal to the area of the rectangularabcd.
First we assume that the osmotic pressures in the chambers

and rates are independent. Then the maximal power problem
for a diffusion engine takes the form

subject to

From (29), we get

We define the equivalent transfer coefficient

and get

Then

The maximum of this expression is

is achieved at

Now we take into account the dependence of the osmotic
pressures in chambers on concentration given by van’t Hoff eq
17, Since these concentrations depend on ratesg1, g2, andg0,
we get

Then expression 30 takes the form

For the efficiency

Both criteria, (31) and (32), have the maximum ong0 at the
same point. Thus, we can use any one of them in the conditions
of optimality to find g0

/. The stationary nature ofN0 on g0

yields the optimal flow

Substitution of (33) and solutiong0
/(g1, g2, C1) into N0 and η

yields the maximal powerN0
/(g1, g2, C1) and maximal ef-

ficiency η*(g1, g2, C1). SinceN0
/ andη* are nonnegative, these

equations single out thermodynamically feasible ranges forg1,
g2, andC1.

Example. Consider a diffusion engine where the working
body contacts reservoirs in turn,g1 ) 0.1 m/s,T ) 298K, R )
8.31 J/(mol‚K), the concentration of the dissolved substance
(salt) in the working body when it contacts concentrated solution
is C̃1 ) 30 kg/m3, and the salt’s concentration in the input flow
g2 is C̃20 ) 50 kg/m3. Since the salt’s molar weight isµ )
0.05843 kg/mol, the molar concentrations areC1 ) 513.43 mol/
m3 andC20 ) 855.72 mol/m3. Since the amount of salt in the
working body does not change over the cycle,g2 ) g1 ) 0.1
m/s. The same membrane is used as was used in the first
example with mass transfer coefficientsR ) R+ ) R- ) 4 ×
10-8 m/(s‚J) for contacts with both reservoirs.

Figure 5. Cycle of the diffusion engine’s working body.

N*0 )
Rj(π - π1 + π2)

2

4
)

R(π + ∆π21)
2

4

g*0 )
Rj(π - π1 + π2)

2
)

Rj(π + ∆π21)

2

π ) CRT) C1

g1RT

g1 + g0

∆π21 ) (C2 - C1)RT) (g2C20 + g0C1

g2 + g0
- C1)RT

N0 ) g0[RT( C1g1

g1 + g0
+

g2C20 + g0C1

g2 + g0
- C1) -

g0

Rj ]
) g0[RT(g2C20 + g0C1

g2 + g0
-

C1g0

g1 + g0
) -

g0

Rj ] f max
g0

(31)

η )
g0

g2
[RT(g2C20 + g0C1

g2 + g0
-

C1g0

g1 + g0
) -

g0

Rj ] f max
g0

(32)

g0 ) RjRT
2 [(g2

2C20 + 2g0g2C1 + g2
0C1

(g2 + g0)
2 ) - C1

g0(g0 + 2g1)

(g1 + g0)
2 ]
(33)

η )
N0

g2
)

g0

g2
∆p21

g0 ) R1(p0 + π - p2) ) R1(π - ∆p20) ) R2[(p1 + π2) -
(p0 + π1)] ) R2(∆π21 + ∆p10) (28)

N0 ) (p2 - p1)g0 f max
p1,p2

R1(p0 + π - p2) ) R2(p1 - p0 + π2 - π1) ) g0 (29)

p1 )
g0

R2
+ p0 + π1 - π2

p2 ) p0 + π -
g0

R1

Rj )
R1R2

R1 + R2

p2 - p1 ) π - π1 + π2 -
g0

Rj

N0 ) g0(π - π1 + π2 -
g0

Rj ) ) g0(π + ∆π21 -
g0

R) f max
g0

(30)
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HereRj is

Let us find the optimal flowg0
/ which maximizes the powerN0

and the efficiencyη. Here, (33) yields an equation for iterations

We set g0
1 ) 0.05 m/s as the initial approximation ofg0

/.
Iterating (34) givesg0

2 ) 9.41× 10-7, g0
3 ) 2.12× 10-6, and

g0
4 ) 2.12 × 10-6. The third iteration gives a sufficiently

accurate solution, sog0
/ ) 2.12× 10-6 m/s.

From (31) and (32), we now find the maximalN0
/ andη*

5. Conclusion

In this paper, the fundamental thermodynamic limits on the
performance of a membrane separation system and a diffusion
engine have been obtained.
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